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A Procedure for Defining Behavior of Weight
Functions Near the Edge for Best Convergence
Using the Galerkin Method

Pinkhos Sh. Fridberg and Iosif M. Yakover

Abstract—A general procedure is described for determining
the behavior of the weight functions (WF) near the edge so as
to provide the best convergence using the Galerkin Method
(GM) for calculating linear functionals of the electromagnetic
theory. It is believed that our procedure is proposed for the
first time. The procedure is based on the equivalence of two
methods of calculating such functionals—the GM and the vari-
ational method (VM). To implement the procedure the sought
linear functional is expressed as a variational functional. The
stationarity condition of the latter leads to some auxiliary prob-
lem. Due to the equivalence mentioned above the WF behavior
near the edge is the same as that obtained from the solution of
the auxiliary problem. The efficiency of the procedure i.e. high
speed of convergence is illustrated by two examples: 1) calcu-
lation of the equivalent circuit shunt impedance of the capaci-
tive diaphragm in a plane waveguide, and 2) calculation of the
capacitance of a metal tube segment filled with dielectric.

I. INTRODUCTION

HE MAJORITY of problems in electromagnetic the-
ory reduce to the calculation of the linear functional
F:

1
F=(uf) S duxf), -1=<a<l1l, O

@

where u(x) is the solution of the linear integral equation
(IE)

\ 1
Lu = S dx' K(x, x" Yu(x') + qu(x) = f(x),

x € [a, 1] 2

of the corresponding boundary problem, and fis the given
function.

The functional F is usually calculated by the GM [1].
The solution is expanded into a series:

ue) = 2 A4, 3
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where {{,, } is some complete system of basis functions
(BF). Afterwards IE (2) is averaged with functions v,
v =1,2, -+, comprising a complete system {{,} of
weight functions (WF). This results in the infinite system
of linear algebraic equations (SLAE)

2 AW W) = Gnf), »=12, @
p=

which is usually solved by the reduction method. The
value of F in the Mth approximation (M is the order of the
reduced SLAE) is calculated by

M
Fu= 2 A0 ). )

In this method the convergence rate with the increase
of M depends substantially on the behavior of BF and WF
near the ends of the segment [a, 1]. In the physical prob-
lem the edges of the investigated object usually corre-
spond to those ends. Thus the question arises: how must
BF and WF behave near the edge of ensure the best con-
vergence of the GM? The obvious answer for BF is that
they must behave like the solution u(x) of the problem
described by the IE (2). Concerning WF this question was
never discussed, they were submitted to the same edge
conditions as BF.

The present work is aimed at developing of the general
procedure for defining the WF behavior near the edge,
which ensures the best convergence using the GM.

II. THe EQUIVALENCE OF THE GM AND VM

To determine the properties of ¥, functions let us use
VM and show its equivalence to the GM. Using the IE
(2) we present the expression (1) as the variational func-
tional:

Flu, a} = @, f) + @, f) — @, Lu). (6)
This functional reaches the stationary value when « and

ii are solutions of two problems: 1) the original one de-
scribed by IE (2), and 2) some auxiliary’, the IE of which

'From now on the values describing the auxiliary problem are marked
with tilde.
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is obtained by the equating to zero of the variation of (6)
with respect to u

1
i = S dx' K(x, x')a(x") + qix) = f(x),

x € [a, 1}. @)

The integral operator L of the auxiliary problem is deter-
mined as follows:

(@, Lu) = (u, La). (8)

Note that ¥ may be also expressed in the terms of the
auxiliary problem

F=@,f). ®

Let us expand #(x) into a series with respect to the com-
plete system of ¥, functions

i) = 2 A,7,@ (10)

and substitute this expansion as well as (3) into the
expression (6). The result is

Flu, i}y = 2 4,00 ) + 2 4,0, 1)

- 2 AAG 1), (11
If we equate derivatives with respect to A, to zero, then
we get SLAE (4). This proves the equivalence of the GM
to VM. Note that if derivatives of (11) with respect to 4,
are equated to zero then we obtain SLAE of the auxiliary
problem

2 A0, 00 =W, =

v=1

L2+, (12)
The F value in the Nth approximation (N is the order of
the reduced system (12)) is calculated by

N
Fy= 2 A}, ). (13)

III. CHoicE oF WF anp BF SYSTEMS
The equivalence of the two methods (the GM and VM)

used to calculate linear functionals allows us to conclude
that WF of the original problem convert into the BF of
the auxiliary problem and vice versa. It means that the
best convergence of the GM is achieved when each of the
functions of ¥, (x) behaves like #i(x) near the ends of the
segment [a, 1], while each of the functions of ¢, (x) be-
haves like u(x).

The behavior of functions # and @ near the edge may
usually be determined by considering a corresponding
two-dimensional model structure. Methods of investiga-
tion of electromagnetic fields in such structures were de-
veloped in [2]-[5]. Sectorial regions formed by metal and
dielectric wedges were considered in [2], and those
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formed by metal and ferrite wedges in [3]. In [4], [5] the
resistive half-plane taken separately as well as in con-
junction with the metal wedge was studied.

The behavior of solutions of both original and auxiliary
problems may be described as

(14a)
(14b)

ax) ~ (x — a)f,

k) ~ (1 - x)P,

u(x) ~ (x — a), x = a,

u(x) ~ (1 =07, x- 1,
The values of the «, 8, &, 3, parameters can not be less
than some definite values prescribed by a so-called edge
condition [6]. This condition requires the electromagnetic
energy concentrated near the edge to be finite, thus as-
suming that uniqueness theorem is fulfilled. Usually poly-
nomials with corresponding weights are used as ¥, and
¥, functions with properties (14). Since the convergence
is practically independent of the polynomial type, they
should be chosen in such a way as to make matrix ele-
ments of SLAE (4) as simple and convenient for calcu-
lations as possible. The possibility of such choice depends
on the type of kemel K(x, x').

In most cases the kernel K(x, x") may be expressed as
an integral (or a series) in the pulse space. In such cases
there is an opportunity to set the corresponding integral
transforms (of BF and WF) rather than the BF and the WF
themselves (see Appendix).

Thus the procedure of choice of the WF system ensur-
ing the best convergence of the GM is as follows. IE of
the auxiliary problem is formulated using VM. Subse-
quently the physical meaning of the problem must be es-
tablished. Next two-dimensional model structures are de-
fined, on which investigation are made to determine the
behavior of #(x) and thus of ¢, (x) near the segment ends
[a, 1]. Then ¥, functions are set either by relations (A1)~
(A4) or as other polynomials with corresponding weights.
Let us illustrate our procedure using the following nu-
merical examples.

IV. CAPACITIVE DIAPHRAGM IN A PLANE WAVEGUIDE
Consider an infinite plane waveguide with a symmetric
infinitesimally thin diaphragm in its cross-section (Fig.
1). Let the incident TEM mode propagate towards the dia-
phragm from the region z = —oo. The magnetic field® of
the TEM mode is

Hx(y7 Z) = ICXP (ikOZ)’ (15)

where k; is the wavenumber in free space, I is the dimen-
sional factor. If we limit ourselves to the 0 < kyb < 27
frequency band, then only one propagating mode is ex-
cited in the waveguide and the system considered is de-
scribed by the equivalent circuit. Calculation of the
equivalent circuit shunt impedance X

1
X = S—1 dvu(v), v =2y/d (16)

2Time dependence is presented as exp (—iwt).



FRIDBERG AND YAKOVER: DEFINING REHAVIOR OF WEIGHT FUNCTIONS FOR BEST CONVERGENCE

(8-d)/2
B d =
l—;—--

(8-d)/2

Fig. 1. Capacitive diaphragm in a plane waveguide.

requires the solution of IE

1
S av'q(v, v")Hu@') =1, -1l=<v =1,
-1

amn
where

", v') = 4k 2 c0S (Pyt) €08 (Pat')/Gu;

g, = NQan /by — k3, p, = wdn/b, u(v) is a non-di-
mensional function proportional to the tangential com-
ponent of the electric field at the aperture. Near the edges
of the diaphragm the behavior of this function is [7]:

u@) ~ 1 — oH V2 v > +1. (18)

Using the GM we set BF by (A2), replacing p by 2p —
1, because u(v) is even. Taking into account (18) it is easy
to see that 7 = —1/2 is the exact value for substitution
in (A2). However, the following calculations will be car-
ried out for various admissible values of 7. WF is also set
by (A2) relation, assuming 7 = ¥ and 4 = 2» — 1. The
result is the SLAE

M
B T <o, A, v L2 M, (19)
where
Tuu = 4k0 n§1 q)Zv—l(%' pn)q)2u<-1(7-| pn)/qns
i = 1/277121 G + 3/2),

I'(x) is gamma function, 8,, is Kronecker delta. The
impedance X sought is calculated via:

Xy =AY d, (1)

resulting from (16).
To determine the parameter 7, providing the best con-
vergence of the GM, let us formulate an auxiliary prob-

lem. We present (16) as a variational functional
1

X{u, a} = S—1 dou(v) +

(20)

1
S_l dvi(v)

1 1
- S—1 dv S—1 av' a(w)q (v, v')u(’). (21)

By equating the variation of (21) with respect to u to zero,
it is evident that IE of the auxiliary problem is equivalent
to IE (17) of the original problem. It means # = u, i.e.
the best convergence of the GM is achieved when BF and
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WF behave identically near the edge (7 = —1/2). This
is the most typical example.

Table I gives the calculated values of X, providing kob
=5,d/b = 0.5. They show the convergence dependence
of the GM and 7 and 7 parameters. As is seen, the best
convergence is really achieved at 7 = ¥ = —1/2.

V. DieLeEcTRIC CYLINDER WITH METAL-COATED SIDE
SURFACE

Now we shall consider the problem where the best con-
vergence of the GM is achieved if BF and WF behave
differently near the edges. This kind of problem has not
been investigated previously.

To calculate the normalized electric capacity C nor-
malized to 4me” r of a metal shell on the side surface of
the dielectric cylinder (Fig. 2) we use the expression

1 1
C=h S 1 diu (9 +2 go dxxu, (x). 22)
Here u,({) and u, (x) are non-dimensional functions pro-
portional to the discontinuity of the normal derivative of
the electrostatic potential on the side surface of cylinder
and on its end face respectively. These functions satisfy
the following 1E system:

l
[ | e ruc ey

1

+ 2 S dxxRy, (§, D)upy(x) = 1
0

) (23)

M S_l diRy (x, Duy (O + up(x)

1
\ + N SO dx’x' R(x, x'Yu,(x') = 0,

o

Ru(§, §') = SO dkfy1 (k) cos (kh{) cos (kh$'),

futt) = 2/m K@ I k),

Ry (§, %) = SO dkfyz (k) cos (kh{) Iy (kx),

f(® = 2/m) Ky (K) cos (kh),

Ry, O = So dkfyy (k) Io (kx) cos (kh?),

fu(k) = — Q2w kKo (k) sin (kh),
R(x, x") = SO dkf (k) Jo (kx) Jo (kx' ),

fk) = —k exp (—2kh),

c=z/lLx=p/r,h=1/r,N=(" —€")/(e +€"),
€ and € are the dielectric permittivities of the cylinder
and its environment, J, is the Bessel function, I, and K,
are modified Bessel functions. Writing (22) and (23) we
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TABLE 1
DEPENDENCE OF CONVERGENCE SPEED OF VALUE X,; ON PARAMETERS 7 AND 7

T

F M -0,9 -0,7 -0,5 -0,3 -0,1
1 —5.9456 —2.4665 ~1.4250 —0.9439 —0.6715
2 —1.8703 —1.6933 ~1.5763 —1.4925 —1.4293
-0,9 3 ~1.6483 -1.6081 —-1.5750 ~1.5474 —1.5240
4 —1.6087 —1.5908 ~1.5750 -1.5612 —1.5488
5 —1.5943 —1.5842 —1.5750 —1.5667 —-1.5644
1 —2.4665 —1.8020 —1.5293 -1.3881 —1.3041
2 —1.6933 —1.6243 —-1.5757 —1.5393 -1.5109
-0,7 3 —1.6081 -1.5901 -1.5751 -1.5623 —1.5514
4 —1.5908 —1.5824 ~1.5751 ~1.5685 —1.5626
5 ~1.5842 —1.5794 ~1.5751 -1.5711 -1.5674
1 —1.4250 —1.5293 ~1.5927 —1.6355 —1.6664
2 -1.5763 -1.5757 ~1.5751 —1.5744 ~1.5738
-0,5 3 —1.5750 —1.5751 —~1.5751 ~1.5750 —1.5750
4 —1.5750 -1.5751 -1.5751 -1.5750 -1.5750
5 -1.5750 ~1.5751 —1.5751 ~1.5750 -1.5750
1 —0.9439 —1.3881 —1.6355 —1.7920 —1.8998
2 —1.4925 -1.5393 —1.5744 —1.6018 —1.6237
-0, 3 3 —1.5474 —1.5623 —1.5750 —1.5860 —1.5956
4 -1.5612 ~1.5685 -1.5750 —1.5809 —1 5862
5 ~1.5667 -1.5711 -1.5750 ~1.5787 -1.5821
1 -0.6715 -1.3041 —1.6664 —1.8998 —2.0622
2 —1.4293 —1.5109 —1.5738 ~1.6237 —1.6643
-0, 1 3 —1.5240 -1.5514 -1.5750 ~1.5926 -1.6135
4 ~1.5488 -1.5626 —1.5750 —~1.5862 —1.5963
5 —1.5644 -1.5674 ~1.5750 —1.5821 —1.5885
4; Zz problem: the rectangular dielectric wedge of which has
one side metal-coated. The permittivity of the wedge and
l its environment is respectively ¢~ and e”. Thus [6]
2
e+ u () ~ A= ¢He, o £l
e uy(x) ~ (1 — x)7o, x — 1,
70 = —1/2 + (1/7) arcsin (A /2). (24)
To implement the GM functions u, and u, are exapnded
in series of the form
0 r [
[=<]
m(©) = 2 A4,x,Q),
p=
[==]
0@ = 2 By, (). (25)
y=
-1 Complete systems {x,} and {¢,} of BF are set by rela-
tions (A2) and (A3). We must take into account that u; ({)
= u; (—{) and replace p by 2u — 1. We have carried out

Fig. 2. Dielectric cylinder with metalized side surface.

consider the problem’s symmetry with regard to the plane
z=0.

The behavior of functions u; ({) and u, (x) near the edge
can be determined by solving two-dimensional model

M
11
ugll Ru’# [
M

v utu
w=

N
AM + 21 R,?,,BI,Y = by, d, (1), 1

N
2 RY AM + X R?, +R,)BY=0, 1<y <N,
1 r=1

calculations, showing how the choice in (A2) and (A3) of
the parameter 7 influences the speed of convergence of
GM. That is why, we do not substitute 7, from (24) in
(A2) and (A3). We designate complete systems of WF as
{%.} and {{, }. Set WF %, by (A2) assuming 7 = 7;, and
replacing p by 2u — 1. Set WF ¢, by (A3) assuming 7 =
7,. Thus SLAE is

(26)
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o)

R, =h SO dkfy; (k) @y, — 1 7y [kh) By, _ | (7]kh),

R;=2 sﬂ dikfi, (k) By, - (7 [kI) T (7 ),

Rl = Nt SO difr ()1, (72 | @2, 1 (7 k),

T(r+ %+ Dl (p+v— 1)

R

N SO dkf (k) J (7, k) T O (7]),

d(7y)

It

1/27%121 (7, + 3/2).

The normalized capacitance C sought is calculated by
Cyuy = [hAY — V2T (x + 3/2)BY/T'(r + 2)] d, (1),

@7

resulting from (22).

In order to determine parameters 7, and 7, ensuring the
best convergence of the GM let’s formulate the corre-
sponding auxiliary problem. Let’s present (22) in the form
of the variational functional

1

i
Cluy, up; iy, y} = h S dfu, (9 + 2 So dxxu, (x) +
“1

TR~y + R/ + DT —p+ 7+ DT +p+7+ %)

of the cylinder with such density as to satisfy the bound-
ary conditions:

6_515‘§=1+0 - €+<2’|§=1—0 =e —€",
2% () _ 3
ile F=1+40 o ;=1—0’
E—$I;=—1+0 - €+Q~5|§=—1—0 =€ — 6+,
3 () 3 (§)
— = — , (30
7 P T AR

i
S_l dgi, (§)

1

1 1 1
—h S-1 ag S~1 dg'ay (DR §Hw (') — 2 S_l dg SO dxity (§) Ryp (§, x)xuz (x)

1 1
— M S dx S~1 d§ﬂ2(X)XR21 (x,

0

1 1
- A S dx S dx' ity (x) + xRy (x, x" )" uy (x).

0 J0

Equating to zero of variations of this functional with re-
spect to u; and u, we obtain the IE system

1
S~1 d{’' Ry (5, §)a(E')
1
+ A SO dxxR21 (x, {)112(%') =]

1 N
S—1 diR1> (§, 0 (D) + i (x)/2

1

+ (N/2) SO dx'x' Ry (x, x' )i, (x') = 1, (29)

where 4, and %, functions differ by constant factors from
the solutions of the IE system described in the following
problem. Charged to a unit potential the metal shell cov-
ers the side surface of a cylinder with permittivity e*. The
cylinder’s environment has permittivity ¢~ and charges
are distributed on inner and outer sides of the end faces

1
Oui (9 — S—] dxxiy (x) up (x)

28)

where ¢ is the electrostatic potential. The function #,
proves to be proportional to the discontinuity of a normal
(to the side surface) derivative of the potential ¢, while
function @, proves to be proportional to the discontinuity
¢ on the end face of the cylinder. It should be noted that
the original and auxiliary problems differ because the ker-
nel of the system (23) is non-symmetrical.

Let’s now determine the behavior of the solution of the
auxiliary problem near the edge. For that purpose we con-
sider a two-dimensional model structure like a rectangular
dielectric wedge with permittivity . This wedge has a
metal-coated face and is placed into the environment with
the dielectric side permittivity e~ . Charges are distributed
on both inner and outer sides of the metal-free face with
such a density that both the tangential component of the
electric induction vector and the normal component of the
electric field vector are continuous. Analysis of this struc-
ture shows that ; and @, function behave at the edge as
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TABLE II
DEPENDENCE OF CONVERGENCE SPEED OF VALUE C);,, ON PARAMETERS 7y = 7, — 1 AND T
T
fFr=1 -1 M -2/3 -0.5 7o = —0 36585 —1/3 0

1 1.1434 1.1702 1.1841 1.1868 12059

2 1.1802 1.1831 1.1851 1.1856 1.1897

-2/3 3 1.1836 1.1845 1.185] 1.1853 1 1868

4 1.1845 1.1848 1.1852 1.1852 1.1860

5 1.1848 1.1850 1.1852 1.1852 1.1856

1 1.1814 1.1841 1.1851 11853 11861

2 1.1837 1.1846 1.1851 1.1853 1.1863

-0,5 3 1.1846 1.1849 1.1852 1.1852 1.1857

4 1.1849 1.1850 1.1852 1.1852 1.1854

5 1.1850 1.1851 1.1852 1.1852 11853

1 1.2021 1.1918 1.1857 1.1844 1.1747

2 1.1862 1.1856 1.1852 1.1850 1.1840

10 = —0.36585 3 1.1854 1.1853 1.1852 1.1851 1.1848

4 1.1852 1.1852 1.1852 1.1851 1.1850

5 1.1852 1.1852 1.1852 1.1851 1.1851

1 1.2062 1.1933 1.1858 1.1842 1.1724

2 1.1868 1.1859 1.1852 1.1850 1.1834

-1/3 3 1.1856 1.1853 1.1852 1.1851 1.1846

4 1.1853 1.1852 1.1852 1.1851 1.1849

5 1.1852 1.1852 1.1852 1.1851 1.1850

1 1.2364 1.2048 1.1867 1.1829 1.1546

2 1.1917 1.1880 1.1852 1.1846 1.1768

0 3 1.1873 1.1861 1.1852 11849 1.1827

4 1.1861 1.1856 1.1852 1 1850 1.1839

5 1.1857 1.1854 1.1852 1.1851 1.1844
follows: The efficiency of the suggested procedure is illustrated
W) ~ (1 = 2y o 41 by two numerical examples: calculation of the equivalent
! ’ - circuit shunt impedance of a capacitive diaphragm in-
() ~ (1 —xt*™ x - 1 serted into a plane waveguide, and the calculation of the

1 E] . p [=3

It is evident that the behavior near the edge of the auxil-
iary problem solution differs substantially from that of the
original one. This fact has not been discovered prior to
this publication.

Values of C calculated by solving SLAE (26), provide
that h = 1, ¢ = 10¢™, M = N and for different values
of parameters 7 and ¥, = 7, — 1, are shown in Table II.
Obviously the best convergence of the GM is obtained
when 7 = 7| = 7, — 1 = 73, which completely agrees
with the above determined behavior of auxiliary problem
solutions (31) near the edge.

V1. CONCLUSION

The procedure for choice of the weight functions sys-
tem ensuring the best convergence of the GM was devel-
oped. To implement this procedure the linear functional
sought is expressed as a variational functional, the sta-
tionarity condition of which reduces to some auxiliary
problem. Proceeding from the physical meaning of the
latter the corresponding two-dimensional model structure
is considered. Its analysis allows to determine the behav-
ior of the auxiliary problem solution near the edge. The
equivalence of two methods of linear functionals calcu-
lation—the GM and VM—signifies that both weight (ba-
sis) functions and the auxiliary (original) problem solu-
tion must behave identically near the edge.

capacitance of a metal shell covering the side surface of
a dielectric cylinder. In the first problem the best conver-
gence of the GM is achieved when BF and WF behave
identically near the edge while in the second problem the
desired result is obtained when their behavior differs. The
latter fact was discovered for the first time.

APPENDIX

If the kernel K(x. x") is expressed in the form of Fourier
integral (series) and a —1, then the complete system
of functions v, satisfying (14) is set in accordance with
8] by the relation’:

3, (e, B| p)

1
S dx exp (—ipx) ¥, (x)
-1

p* lexp (ip) Fi(p + o 21 + a + B; —2ip),

p=12---, (A1)

where F) is the degenerate hypergeometric Cummer’s se-
ries [10]. That corresponds to the use of Jacobi polyno-
mials with proper weights for the . In a particular case

*Later the same result was obtained in [9].
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when @ = 8 = 7 > —1 we have [8]:

1
®,(7| p) S_I dx exp (~ipx) ¥, (x)
p

=p T, p=12,00

(A2)

instead of (A1l). That corresponds to the use of Gegen-
bauer’s polynomials with proper weights for the y,,.

If the kemnel K(x, x') is expressed in the form of the
integral (series) with respect to Bessel functions with a
fixedindex s, anda =0, a =0, 8 = 7 > —1, then the
system of functions ¥, (x) is given by relation [11]:

J. (7] p) S‘ . J;(px)
I, (7| p) 0 I( px)

+1-1/2(P),

1]

¥y (x)

JZ()L—I)+S+T+1(p)5

(*1)”12(u—1)-+s+T+1(P),

= p—(r+1)

=12, (A3)

which corresponds to the use of Jacobi polynomials with
proper weight for the ), (x). If the kernel K(x, x") is ex-
panded in series (integral) with respect to arbitrary cylin-
drical functions with a fixed index sanda > 0, o = 8
= 7 > —1, then functions y are set by relations [12],
[13}:

1 .
Z6lp) = | aoZ,(povi = p™ P
1 —‘a 1+
< ) p> Zouy +s <—*2—G'P>,
n(p) = Bp -2 - (=D¥*p — 2)1/4,

m(p) = {1 + (=D*1n/4,

p=12 -, (A4)

where Z is an arbitrary linear combination of Bessel func-
tions J; and Neuman functions N, or by the relation:
t

U, @l p) = Sa dxxU, (p) ¥ (x) = (—1)Wp ~+1/2)

1—-a
: In(u)+1'+l/2 2 p

1 +a
: Um(,u)+s (T‘P)

whereo = g*,if U, =Lando =g, if U, = K;; g¥(p)
= [n(p) + m(u)]/2. Formulas (A4), (A5) correspond to
the use of special functions proposed and investigated by
Rosenblum and Fridberg [12], [13] for ¢ .

(AS)
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