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A Procedure for Defining Behavior of Weight

Functions Near the Edge for Best Convergence

Using the Galerkin Method
Pinkhos Sh. Fridberg and Iosif M. Y’akover

Abstract—A general procedure is described for determining
the behavior of the weight functions (WF) near the edge so as
to provide the best convergence using the Galerkin Method
(GM) for calculating linear functional of the electromagnetic
theory, It is believed that our procedure is proposed for the
first time. The procedure is based on the equivalence of two
methods of calculating such functionals—the GM and the vari-
ational method (VM). To implement the procedure the sought
linear functional is expressed as a variational functional. The
stationarity condition of the latter leads to ;someauxiliary prob-
lem. Due to the equivalence mentioned above the WF behavior
near the edge is the same as that obtained from the solution of
the auxiliary problem. The efficiency of the procedure i.e. high
speed of convergence is illustrated by two examples: 1) calcu-
lation of the equivalent circuit shunt impedance of the capaci-
tive diaphragm in a plane waveguide, and 2) calculation of the
capacitance of a metal tube segment filled with dielectric.

I. INTRODUCTION

T HE MAJORITY of problems in electromagnetic the-

ory reduce to the calculation of the linear functional

F

J

1

F=(u, f)= (2%4(X)?(X) , --1< a <1, (1)
a

where u(x) is the solution of the linear integral equation

(IE)

,

!

1

Lu = &’ K(X> x’ )U(x’ ) + ql!l(x) = f(x),
a

x c [a, 1] (2)

of the corresponding boundary problem, and~is the given

function.

The functional F is usually calculated by the GM [1].

The solution is expanded into a series:

u(x) = ~:1 Ap *# (x), (3)
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where {*P } is some complete system of basis functi~ns

(BF). Afterwards IE (2) is averaged with functions ~V,

V =1,2,”’”, comprising a complete system {~, } of

weight functicms (WF). This results in the infinite system

of linear algebraic equations (SLAE)

m

which is usually solved by the reduction method. The

value of F in the Mth approximation (M is the order of the

reduced SLAE) is calculated by

M

(5)

In this metlhod the convergence rate with the increase

of M depends substantially on the behavior of BF and WF

near the ends of the segment [a, 1]. In the physical prob-

lem the edges of the investigated object usually corre-

spond to those ends. Thus the question arises: how must

BF and WF behave near the edge of ensure the best con-

vergence of the GM? The obvious answer for BF is that

they must belhave like the solution u(x) of the problem

described by the IE (2). Concerning WF this question was

never discussed, they were submitted to the same edge
conditions as BF.

The present work is aimed at developing of the general

procedure for defining the WF behavior near the edge,

which ensures the best convergence using the GM.

II. THE EQUIVALENCE OF THE GM AND VM

To determine the properties of ~P functions let us use

VM and show its equivalence to the GM. Using the IE

(2) we present the expression (1) as the variational func-

tional:

F{u, ti] = (U, f) + (ti, f) – (% h). (6)

This functional reaches the stationary value when u and

u are solutions of two problems: 1) the original one de-

scribed by IE (2), and 2) some auxiliaryl, the IE of which

‘From now on the values describing the auxiliary problem are marked

with tilde.
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is obtained by the equating to zero of the variation of (6)

with respect to u

[

1
EQ ~ da? x(x, x’) fi(x’ ) + qfi(x) = f(x),

da

xc [(2, 1].

The integral operator ~ of the auxiliary

mined as follows:

(U, LU) = (u, L1.1).

Note that F may be also expressed in

auxiliary problem

F = (zz,f).

(7)

problem is deter-

(8)

the terms of the

(9)

Let us expand ti(x) into a series with respect to the com-

plete system of JU functions

cm

(lo)

and substitute this expansion as well as (3) into the

expression (6). The result is

m m

(11)

If we equate derivatives with respect to ~U to zero, then

we get SLAE (4). This proves the equivalence of the GM

to VM. Note that if derivatives of (11) with respect to AV

are equated to zero then we obtain SLAE of the auxiliary

problem

m

The F value in the Nth approximation (N is the order of

the reduced system (12)) is calculated by

N

(13)

III. CHOICE OF WF AND BF SYSTEMS

The equivalence of the two methods (the GM and VM)

used to calculate linear functional allows us to conclude

that WF of the original problem convert into the BF of

the auxiliary problem and vice versa. It means that the

best convergence of the GM is achieved when each of the

functions of ~U (x) behaves like ti(x) near the ends of the

segment [a, 1], while each of the functions of +Y (x) be-

haves like u(x).

The behavior of functions u and Z2 near the edge may

usually be determined by considering a corresponding

two-dimensional model structure. Methods of investiga-

tion of electromagnetic fields in such structures were de-

veloped in [2] –[5]. Sectorial regions formed by metal and

dielectric wedges were considered in [21. and those

formed by metal and ferrite wedges in [3]. In [4], [5] the

resistive half-plane taken separately as well as in con-

junction with the metal wedge was studied.

The behavior of solutions of both original and auxiliary

problems may be described as

u(x) - (x – a)”, zZ(x) – (x – a)’, x ~ a, (14a)

u(x) - (1 – X)6, U(x) - (1 – x)~, X + 1, (14b)

The values of the a, ~, &, ~, parameters can not be less

than some definite values prescribed by a so-called edge

condition [6]. This condition requires the electromagnetic

energy concentrated near the edge to be finite, thus as-

suming that uniqueness theorem is fulfilled. Usually poly -

nomials with corresponding weights are used as 1,, and

iv functions with propertie~ (14~ Since the convergence

is practically independent of the polynomial type, they

should be chosen in such a way as to make matrix ele-

ments of SLAE (4) as simple and convenient for calcu-

lations as possible. The possibility of such choice depends

on the type of kernel K(x, x’).

In most cases the kernel K(x, x’) may be expressed as

an integral (or a series) in the pulse space. In such cases

there is an opportunity to set the corresponding integral

transforms (of BF and WF) rather than the BF and the WF

themselves (see Appendix).

Thus the procedure of choice of the WF system ensur-

ing the best convergence of the GM is as follows. IE of

the auxiliary problem is formulated using VM. Subse-

quently the physical meaning of the problem must be es-

tablished. Next two-dimensional model structures are de-

fined, on which investigation are made to determine the

behavior of ii(x) and thus of iv(x) near the segment ends

[a, 1]. Then iv functions are set either by relations (Al)-

(A4) or as other polynomials with corresponding weights.

Let us illustrate our procedure using the following nu-

merical examples.

IV. CAPACITIVE DIAPHRAGM IN A PLANE WAVEGUIDE

Consider an infinite plane waveguide with a symmetric

infinitesimally thin diaphragm in its cross-section (Fig.

1). Let the incident TEM mode propagate towards the dia-

phragm from the region z = – m. The magnetic field2 of

the TEM mode is

Iix( y, z) = Z exp (ikoz), (15)

where kO is the wavenumber in free space, Z is the dimen-

sional factor. If we limit ourselves to the O < k. b < 2m

frequency band, then only one propagating mode is ex-

cited in the waveguide and the system considered is de-

scribed by the equivalent circuit. Calculation of the

equivalent circuit shunt impedance X

!
1

x= dvu(v) , V = 2y/d (16)
–1

‘Time dependence is presented as exp (– itir).
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I, (8-d)/2! I
4

-L4K__
Fig. 1. Capacitive diaphragm inaplane waveguide.

requires the solution of IE

1

1

dv’q(v, v’)u(u’) = 1, -1< 2/’ <1, (17)
–1

where

co

‘q(v, v’) = 4ko ,~1 Cos (pnv) cm (pnv’ )/qn,

qn = d(2m/b)2 – kt, p. = 7rdn/b, u(v) is a non-di-

mensional function proportional to the tangential com-

ponent of the electric field at the aperture. Near the edges

of the diaphragm the behavior of this function is [7]:

u(v) - (1 – V2)-lP, v -+ *1. (18)

Using the GM we set BF by (A2), replacing p by 2P –

1, because u(v) is even. Taking into account (18) it is easy

to see that 7 = – 1/2 is the exact value for substitution

in (A2). However, the following calculations will be car-

ried out for various admissible values of 7. WF is also set

by (A2) relation, assuming ~ = 7 and p = 2V – 1.

result is the SLAE

f T,PA; = & d,(;), V=1,2, ”””, A4,
~=1

where

w

TVP = 4k0 ~~1 %p- 1(?I P.)@zp -- 1(~1 Pn)/qn,

dl (?) = 1/2 ‘+1/21’(? + 3/2),

J7(x) is gamma function, iilV is Kronecker delta.

impedance X sought is calculated via:

X~ = A~d1(7)

resulting from (16).

The

(19)

The

(20)

To determine the parameter ?, providing the best con-

vergence of the GM, let us formulate an auxiliary prob-

lem. We present (16) as a variational functional

~

1

!

1

X{u, a} = dvu(v) + dvti(v)
–1 –1

1

S!

1

— dv dv’ ti(V) q (V, V’ )U(V’ ). (21)
–1 –1

By equating the variationof(21) with respect to u to zero,

it is evident that IE of the auxiliary problem is equivalent

to IE (17) of the original problem. It means U = u, i.e.

the best convergence of the GM is achieved when BF and

WF behave identically near the edge (7 = – 1 /2). This

is the most typical example.

Table I gives the calculated values of X~ providing k. b

= 5, d/b = 0.5. They show the convergence dependence

of the GM and ~ and 7 parameters. As is seen, the best

convergence is really achieved at 7 = ? = – 1 /2.

V. DIELECTRIC CYLINDER WITH METAL-COATED SIDE

SURFACE

Now we shall consider the problem where the best con-

vergence of the GM is achieved if BF and WF behave

differently near the edges. This kind of problem has not

been investigated previously.

To calculate the normalized electric capacity C nor-

malized to 47re + r of a metal shell on the side surface of

the dielectric cylinder (Fig. 2) we use the expression

s

1

s

I

C=h d@l (~) + 2 &u~ (x). (22)
–1 o

Here U1(~) and U2(x) are non-dimensional functions prop-

ortional to the discontinuity of the normal derivative of

the electrostatic potential on the side surface of cylinder

and on its end face respectively. These functions satisfy

the following IE system:

[!’
h d(’ll~,(j-, j-’)u~ ((’)

.. 1

I (
1

+2 dxxR12 ({, x) U2(x) = 1

1<‘-
JO

s

1
(23)

Ah d{R21 (X, ~) U~ (~) + U2 (X)
–1

!

1

+x dx’.x’R(x, X’ )U2(X’ ) = O,
0

!

m

Rll(~, t’) = dkfil (k) COS(kh~) COS(kh{ ‘ ),
o

f,, (k) = (2/719 ~o(k)lo (k),

!
m

R12(~, X) = dkfi2 (k) COS(kh{) lo (kx),
o

.f12(k) = (2/70K~ (k) COS

s

.

R21(X, ~) = o dkfil (k) 10(b) COS(kh~),

(kh),

k, (k) = - (27r) kKo(k) sin (kh),

!
m

R(x> X’) = dkf(k) Jo (kx).lo (kx’ ) ,
0

f(k) = -k exp (-2kh),

~ = z/l, x = P/r, h = l/r, h = (e- – e+)/(E- + C+),
E– and e+ are the dielectric permittivities of the cylinder

and its environment, JP is the Bessel function, 1P and KP

are modified 13essel functions. Writing (22) and (23) we
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TABLE I
DEPENDENCE OF CONVERGENCE SPEED OF VALUE X~ ON PARAMETERS ? AND T

T

–o, 9 –o, 7

1
2

–o, 9 3
4
5

1
2

–o, 7 3
4
5

1

2

–o, 5 3
4
5

1
2

–o, 3 3
4
5

1
2

–o, 1 3
4
5

–5.9456
– 1.8703
-1.6483
– 1.6087
– 1.5943

–2.4665
–1.6933
–1.6081
– 1.5908
-1.5842

– 1.4250
–1.5763
– 1.5750
– 1.5750
-1.5750

-0.9439
– 1.4925
-1.5474
-1.5612
-1,5667

–0.6715
– 1.4293
– 1.5240
-1.5488
– 1.5644

–2.4665
–1.6933
–1.6081
– 1.5908
–1.5842

– 1.8020
– 1.6243
–1.5901
–1.5824
– 1.5794

– 1.5293
– 1.5757
–1.5751
–1.5751
–1.5751

–1.3881
–1.5393
–1.5623
–1.5685
–1.5711

–1.3041
–1.5109
–1.5514
– 1.5626
– 1.5674

–o, 5 –o, 3

– 1.4250 –0.9439
– 1.5763 – 1.4925

– 1.5750 -1.5474

– 1.5750 –1.5612

– 1.5750 – 1.5667

– 1.5293 -1.3881

– 1.5757 – 1.5393
–1.5751 -1.5623
–1.5751 -1.5685
–1.5751 –1.5711

– 1.5927 –1.6355

–1.5751 – 1.5744
–1.5751 – 1.5750

–1.5751 -1.5750

–1.5751 – 1.5750

–1.6355 -1.7920

–1.5744 –1.6018

– 1.5750 –1.5860

– 1.5750 –1.5809

–1.5750 -1.5787

– 1.6664 – 1.8998

–1.5738 –1.6237

– 1.5750 – 1.5926

– 1.5750 –1.5862

– 1.5750 –1.5821

–o, 1

–0.6715
– 1.4293
– 1.5240
–1.5488
– 1.5644

–1.3041
–1.5109
–1.5514
– 1.5626
– 1.5674

– 1.6664
–1.5738
– 1,5750
– 1.5750
– 1.5750

–1.8998
– 1.6237
– 1.5956
–1 5862
–1.5821

–2.0622
– 1.6643
–1.6135
– 1,5963
–1.5885

&-

0

Fig. 2. Dielectric cylinder with metalized side surface,

consider the problem’s symmetry with regard to the plane

,? =0.

The behavior of functions u, (~) and U2(x) near the edge

can be determined by solving two-dimensional model

M N

problem: the rectangular dielectric wedge of which has

one side metal-coated. The permittivity of the wedge and

its environment is respectively e– and c+. Thus [6]

u, (~) - (1 – ~’)’o, f+ +1,

U2(x) - (1 – x)’”, X+l,

t-. = –1/2 + (1/7) arcsin (h/2). (24)

To implement the GM functions Ml and U2 are exapnded

in series of the form
m

U2(x) = ,;l Bu +, (.x). (25)

Complete systems {XP } and {t. } of BF are set by rela-

tions (A2) and (A3). We must take into account that u, (~)

= U1( – 0 and replace u by 2LL – 1. We have carried out

calculations, sho;ing how-the choice in (A2) and (A3) of

the parameter 7 influences the speed of convergence of

GM. That is why, we do not substitute I-. from (24) in

(A2) and (53). We designate complete systems of WF as

{~p } and {~,}. Set WF 2P by ($2) assuming ~ = ?1, and
replacing p by 2p – 1. Set WF $U by (A3) assuming ~ =

?Z. Thus SLAE is

(26)
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R~ .
r(T +?*+ l)r(p+ v– 1)

27+ F*+] II(P – V+7Z + l)r(v –w +7+ l)r(v +P +7+ ;Z)’

d(?l) = l/2y’+1j21’(71 + 3/2),

The normalized capacitance C sought is calculated by

—

of the cylinder with such density as to satisfy the bound-

(27)

resulting from (22).

In order to determine parameters 71 and ?2 ensuring the

best convergence of the GM let’s formulate the corre-

sponding auxiliary problem. Let’s present (22) in the form

of the variational functional

1

H
1

–h d{ _, dt’til(~)Rll(~, r’)u, (~’) -2 j_l d~ j. dxzzI(ORn(~, x).xu2(x)
–t

1

H

1

~

1

–Ah & djw2 (X)XR21 (x, ~) UI (~) – dXxti* (x) U2(x)
o –1 –1

1

!!

1

–A dx dx’ ti2(x) “ XRZ2(X, x’ )k’ Uz(.x’).
o !0

(28)

Equating to zero of variations of this functional with re-

spect to U1 and U2 we obtain the IE system

~

1

d~’Rll (f, ~’)til(~’)
–1

[

1

+A dxxR21 (X, ~) ti2 (X) = ;i
o

!
1

d~R12 (~, X) ZIl (~) + ZZ2(x)/2
–1

J

1

+ (A/2) dx’x’Rz2 (x,x’ )ti:z (x’ ) = 1, (29)
o

where til and ti2 functions differ by constant factors from

the solutions of the IE system described in the following

problem. Charged to a unit potential the metal shell cov-

ers the side surface of a cylinder with penmittivity e+. The

cylinder’s environment has permittivity e– and charges

are distributed on inner and outer sides of the end faces

. —

where & is the electrostatic potential. The function til

proves to be proportional to the discontinuity of a normal

(to the side surface) derivative of the potential 6, while

function ti2 proves to be proportional to the discontinuity

6 on the end face of the cylinder. It should be noted that
the original and auxiliary problems differ because the ker-

nel of the system (23) is non-symmetrical.

Let’s now determine the behavior of the solution of the

auxiliary problem near the edge. For that purpose we con-

sider a two-dimensional model structure like a rectangular

dielectric wedge with perrnittivity e+. This wedge has a
metal-coated face and is placed into the environment with

the dielectric side permittivity 6-. Charges are distributed

on both inner and outer sides of the metal-free face with

such a density that both the tangential component of the

electric induction vector and the normal component of thle

electric field vector are continuous. Analysis of this struc-

ture shows that til and i72 function behave at the edge as
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TABLE II
DEPENDENCEOFCONVERGENCESPEEDOFVALUE CMMONPARAMETERS~1 = ~Z – 1 ANDT

T

~,=yz—l M –2/3 –0.5 To = –O 36585 –1/3 o

1
2

–2/3 3
4
5

1
2

–o, 5 3
4
5

1
2

TO= –0.36585 3
4
5

1
2

–1/3 3
4
5

1
2

0 3
4
5

1.1434
1.1802
1.1836
1.1845
1.1848

1.1814
1.1837
1.1846
1.1849
1.1850

1.2021
1.1862
1.1854
1.1852
1.1852

1.2062
1,1868
1.1856
1.1853
1.1852

1.2364
1.1917
1.1873
1.1861
1.1857

1.1702
1.1831
1.1845
1.1848
1.1850

1.1841
1.1846
1.1849
1.1850
1.1851

1.1918
1.1856
1.1853
1.1852
1.1852

1.1933
1.1859
1.1853
1.1852
1.1852

1.2048
1.1880
1.1861
1.1856
1.1854

1.1841
1.1851
1.1851
1.1852
1.1852

1.1851
1.1851
1.1852
1.1852
1.1852

1.1857
1.1852
1.1852
1.1852
1.1852

1,1858
1.1852
1.1852
1.1852
1.1852

1.1867
1.1852
1.1852
1.1852
1.1852

1.1868
1.1856
1.1853
1.1852
1.1852

1 1853
1.1853
1.1852
1.1852
1.1852

1.1844
1.1850
1.1851
1.1851
1.1851

1.1842
1.1850
1.1851
1,1851
1,1851

1.1829
1.1846
1 1849
1 1850
1.1851

follows:

ti~ (~) - (1 – ~2)T”, <- +1,

ill (x) - (1 - x)’+’”, X+1* (31)

It is evident that the behavior near the edge of the auxil-

iary problem solution differs substantially from that of the

original one. This fact has not been discovered prior to

this publication.

Values of C calculated by solving SLAE (26), provide

thath = 1, e- = 10e +, M = N and for different values

of parameters I- and 71 = ?2 – 1, are shown in Table II.
Obviously the best convergence of the GM is obtained

when r = ?l = f2 – 1 = 7., which completely agrees

with the above determined behavior of auxiliary problem

solutions (31) near the edge.

VI. CONCLUSION

The procedure for choice of the weight functions sys-

tem ensuring the best convergence of the GM was devel-

oped. To implement this procedure the linear functional

sought is expressed as a variational functional, the sta-

tionarity condition of which reduces to some auxiliary

problem. Proceeding from the physical meaning of the

latter the corresponding two-dimensional model structure

is considered. Its analysis allows to determine the behav-

ior of the auxiliary problem solution near the edge. The

equivalence of two methods of linear functional calcu-

lation—the GM and VM—signifies that both weight (ba-

sis) functions and the auxiliary (original) problem solu-

tion must behave identically near the edge.

12059
1.1897
1 1868
1.1860
1.1856

1 1861
1.1863
1.1857
1.1854
1 1853

1.1747
1.1840
1.1848
1.1850
1.1851

1.1724
1.1834
1.1846
1.1849
1.1850

1.1546
1.1768
1.1827
1.1839
1.1844

The efficiency of the suggested procedure is illustrated

by two numerical examples: calculation of the equivalent

circuit shunt impedance of a capacitive diaphragm in-

serted into a plane waveguide, and the calculation of the

capacitance of a metal shell covering the side surface of

a dielectric cylinder. In the first problem the best conver-

gence of the GM is achieved when BF and WF behave

identically near the edge while in the second problem the

desired result is obtained when their behavior differs. The

latter fact was discovered for the first time.

~PPEXDIX

If the kernel K(x. x’) k expressed in the form of Foutier

integral (series) and LZ = – 1, then the complete system

of functions $. satisfying (14) is set in accordance with

[8] by the relation3:

@v(a, BI p)

!

I
~ & exp (– ipx) +,, (x)

–1

=P’-f exp (ip)l Fl(p + a. 2A + a + ~; –2ip),

p=l,2, ”””, (Al)

where ~F1 is the degenerate hypergeometric Cummer’s se-

ries [10]. That corresponds to the use of Jacobi polyno-

mials with proper weights for the +P. In a particular case

3Later the same result was obtained in [9].
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=T> – 1 we have [8]:

[

1

, & exp (–ipx) *P(x)
d-l

=
P

-(~+ V2)Jp+7_ 1/2(p), p = 1,2, “ “ “ ,

(A2)

instead of (A 1). That corresponds to the use of Gegen-

bauer’s polynomials with proper weights for the *Y.

If the kernel K(.x, x’) is expressed in the form of the

integral (series) with respect to Bessel functions with a

fixed index s, and a = O, u = O, 6 = ~ > –1, then the

system of functions ~ ~ (x) is given by relation [11]:

#=1,2,”””, (A3)

which corresponds to the use of Jacobi polynomials with

proper weight for the #~(x). If the kernel K(x, x’) is ex-

panded in series (integral) with respect to arbitrary cylin-

drical functions with a fixed index s and a > 0, a = B

= T > – 1, then functions ~ ~ are set by relations [12],

[13]:

s

1

Z;(7I p) = dxxz, (px)#; (X) = p-(’+ 1\2)Jn(Y)+, +1j2
a

n(~) = [3P – 2 – (–l)Y(p – 2)]/4,

nr(~) = [1 + (–l)~]p/4,

p=l,2, ”””, (A4)

where Z~ is an arbitrary linear combination of Bessel func-

tions J, and Neuman functions N,, or by the relation:

~

1

U;(T] p) = h~s(Pm*;(x) = (–l)”@)p-(’+i/2)
a

“ ‘n(~) +7+l/2
()

l–a
--j-P

()l+a
“ ‘m(p)+s z ,P (A5)

whereu = g+, if U~=I$and ~=g-, if U$=K~; g~(p)

= [n(p) ~ m(p)] /2. Formulas (A4), (A5) correspond to

the use of special functions proposed and investigated by

Rosenblum and Fridberg [12], [13] for + ~.
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